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The effect of gravity acting perpendicularly to the stratification induced by 
rotation in a compressible fluid is investigated. The y = 1 approximation used 
by Gans (1974) in an investigation of the free modes of a rotating gas is used to 
find an inviscid solution. The boundary layers are calculated, and their suctions 
are shown to lead to a resonance. The amplitude of the resonance mode is calcu- 
lated and seen to be of the same order as the simple inviscid solution, so that a 
corrected solution can be obtained. 

The stability of the system is discussed in a simple fashion. It seems likely 
that a turbulent core will form in a cylinder. The interaction of such a core with 
the remainder of the fluid is beyond the scope of this paper. Finally a procedure 
by which a zonal flow field can be found is given. 

1. Introduction 
The question of the behaviour of rotating compressible fluid systems is relevant 

to meteorology, astrophysics and engineering. Most attention has been paid to 
situations where the Boussinesq approximation is valid and there is little informa- 
tion of a global nature available €or arbitrary Mach number, though a global 
approach will eventually be necessary to study the dynamics of such systems with 
confidence in the results. 

In  this paper I consider forced motions in a uniformly rotating gas contained 
in a finite rigid cylinder. The forcing chosen is one realizable in the laboratory: 
that caused by gravity when the rotation axis of the container is horizontal. 
This configuration has been chosen in part for simplicity, in part because of its 
realizability in the laboratory and in part because the free modes of the system 
are available (Gans 1974, hereafter called I) .  

The most novel feature of this work is the discovery of a ‘resonance’ which 
allows the axially independent forcing function to drive an axially dependent 
free mode. The amplitude of this driven motion is of the order of the inverse 
Froude number g/Q2L, where g, 0 and L are the acceleration due to gravity, 
rotation rate and container diameter, respectively. The resonance arises because 

7 Present address: Department of Mechanical and Aerospace Sciences, University of 
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ofEkman suction on the end walls, and this suction is a feature of the compressible 
case only; there is  no such suction for an unstrutiJiedjuid. 

Much of the formulation of this paper depends on I. In  $ 2 a brief formulation, 
independent of I ,  is given, but the reader is referred to I for the details. 

There are five relevant parameters involved in this problem. Four of these 
are inverse Froude number 6, an Ekman number E,  measuring the influence of 
viscosity (and more fully discussed below), a Mach number p, the ratio of the 
peripheral velocity to the central sound speed, and y, the ratio of the specific 
heats. The range of validity of the analysis is 6 < E* < 1, y - I < 1. The condition 
on the Ekman number limits the Mach number, as the Ekman number depends 
on the Mach number. This point is discussed in $ 3  below. The fifth parameter is 
the length-to-diameter ratio A. 

The plan of the paper is as follows. In  $ 2  a general formulation, following I, 
is given. In  addition, a forcing term and viscous terms are incorporated. The 
simplification arising from y = I as a leading term is demonstrated. The rest of 
the paper is restricted to the investigation of the y = 1 leading term. In  $ 3  
the inviscid forced solution is given, and its boundary layers are calculated. In 
$ 4 the suctions are calculated, and it is shown that the required inviscid correc- 
tions lead to formally infinite amplitudes. 

In  $ 5 the correct first-order solution is calculated, giving the amplitude of the 
resonant mode. The procedure is as follows. The first-order inviscid solution is 
supposed to be composed of the forced solution calculated in $ 3 and an arbitrary 
amount of the resonant mode uncovered in $ 4. The combined boundary layers are 
found and their suctions are calculated: one of fixed and one of arbitrary ampli- 
tude. The correction problem is then formulated, and the condition that the 
inhomogeneous terms in the correction problem be orthogonal to the resonant 
mode determines the amplitude of the resonant mode. 

In  $ 6  the stability of the system is discussed briefly, and the analytic results 
are evaluated for special values of p and A. 

2. Formulation 

at frequency 0, and an imposed dimensional temperature distribution 
The equations of motion will be linearized around a basic state of solid rotation 

1 a ( y - I )  0 2 a 2  

2I+a(y - I )  R ’ TA(a) = T,+- 

where T, is the central temperature, y the ratio of specific heats, R the gas 
constant, GJ the radial co-ordinate in a cylindrical (a, $, z)  co-ordinate system 
and a is an introduced parameter. When a = 1 the temperature distribution 
is adiabatic. The prime denotes dimensionality. 

The details of the linearization and non-dimensionalization are given in full in 
I, so I shall merely summarize the results here. 

If L is the radius of the container and M the total mass of gas in the container, 
the density may be scaled by MIL3, the pressure by !2M/L, lengths by L, times 
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by 0 - 1  and velocities by RL. h will be used to denote the length-to-diameter ratio 
of the container. The dimensionless basic state may then be written as 

I “Y(Y-1)  p2w2 = c2, To(w) = 1 + -  
21+a(y-1) 

(2.2) 

The perturbation quantities necessary are the velocity u, pressure p and density 
p. The quantity ,u will be referred to as the Mach number, and is defined by 

p2 = PL2/yRT,. 

The rotation axis is supposed horizontal, so that the gravitational force looks 
to the rotating fluid like a function of ex#. The question of the free modes of the 
system has been extensively examined in I, so that attention here will be re- 
stricted t o  forced velocities, pressures and densities, and these will be supposed to 
be directly forced, independent of z and t and to vary with q5 as eid. 

The equation of state can be used to eliminate p in terms of p and u = & . u: 
p = ( ,u~/c~)  - ipo KWU] . (2.3) 

Then the conservation of mass and momentum may be written as 

respectively. In these equations 

and the unit vector f points downwards. F, is the viscous force. In  I, which was 
an investigation of the possible free modes of the system, the viscous force was 
quickly supposed small and discarded. This cannot be done here. 

The dimensional viscous force F’ is most easily written in tensor notation as 

F; = {T[Cui,j +uj,i) - @k,kSijI),j, (2.6) 

where 7 is the (dynamic) viscosity, a comma denotes the covariant derivative 
and Sgj is the Kronecker delta. Using a subscript c to denote quantities at the 
centre one can write 

so that 
7 = 7c(T/Tc)+, 

Non-dimensionalization introduces the parameter 
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and then the substitution p = poQ and subsequent division by po leads to a 
a-dependent Ekman number 

which will be supposed to be very much Iess than unity for all a (0 < a < 1). 
The usual boundary-layer assumption is that derivatives normal to the 

boundary-layer-dependent variables are much larger than those tangential to the 
boundaries. Because the fluid under consideration in this paper is compressible an 
additional assumption, equivalent to boundary-layer thickness small compared 
with scale height, is necessary. This assumption allows the neglect of the Vy 
term, so that the viscous force can finally be approximated by 

= TIPC Po QL2, (2.10) 

F, = E(m) Pii/an2, (2.11) 

where a tilde is used to denote boundary-layer quantities. 
The inviscid solution is obtained by reducing the problem to a single second- 

order ordinary differential equation in Q = PIPo, as in I .  The boundary-layer 
corrections are obtained by working directly with the boundary-layer velocities. 
It is tedious to do this in general and, since the only actual calculations to be 
performed are those for y = 1, the boundary-layer formulation will be deferred 
until $ 4  below, and the remainder of this section is given to defining the inviscid 
problem for forced motion. 

The method of solution is similar to that given in I; however, the restriction 
to directly forced motions makes things easier. In particular the axial velocity 
component w is identically zero. I set p = poQeid and solve (2.4) for the radial 
and azimuthal velocity components u and v: 

(2.12) 

i 1+k,a2  2 -P2W \ Q +  h - Q - 3 eiO, 
c2 I 

1 1 +k,a2 1 7 pa ( 2 ~ '  +a Q +A - Q - 3 +K~?] e$$. 
3 1 + k 2 a 2  C2 C 

a = -  
31+k,w2 

v = - -  

Here a prime denot'es differentiation with respect to a, and 

These representations are then substituted into the equation of mass conserva- 
tion to give a single equation in Q: 

where 

p 2 .  
(Y - 1) C21(1 -a)  + 3ayl pL", c2 = 

1 +a(y -  I )  
(1 -a )  (2  + 7) + 3ay2 

c1 = 
1 +a(y-  1) 

This is to be solved in conjuncbion with the condition that physical quantities 
be bounded a t  the origin and that u, as given above, should vanish on a = 1. 
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The equation can be effectively reduced to first order by the substitution 
Q = w@. After some algebra a first-order equation for @’ is obtained: 

@ ’ =  c1 -- c2 (2.15) 
3 yp2a 2k2w -+--- 
w 1+klw2 l+k,w2 1 1 + k,w2 I - k2w2’ 

In terms of @ the boundary condition is 

(2.16) 

It is clear that the problem defined by (2.15) and (8.16), and a boundedness 
condition a t  the origin, can now be reduced to quadratures. It should also be 
clear that such a procedure would produce a solution sufficiently complicated 
to obscure any information one might hope to obtain. Therefore, in $3)  I shall 
return to the approximation scheme that was so profitable in I :  an expansion 
in powers of y - 1, retaining only the zeroth-order term. 

3. The forced solution for y = 1 

The zeroth approximation to 0 satisfies 

@” + [3 /a  +p%] @‘ = 3) 

subject to the boundary condition 

@ ’ + 3 @ = 3  on w = 1 .  (3.2) 

(3.3) 

Integrating (3.1) once gives 

w3 exp ( +p2w2) 0’ = ( 6/p4) ( &p2w2 - 1) exp ( +,u2w2) + A,, 

and to obtain appropriate behaviour at  the origin A ,  must be set equal to 6/p4. 
A second integration gives 

[I - exp ( - ~,u2w2)1+ tp2[log i p 2 a 2  + ~,( ip2w2)  - log +p21 + A ~ ) )  
p4 2w2 

(3.4) 

where E,(x) = JZrn T a t  

is the exponential integral and A ,  is to be chosen to satisfy (3.2). The form of the 
log term has been chosen to take advantage of the identity (Gautschi & Cahill 
1964) ( - 1 ) n x n  

E,(z)+logx = -y* - ~ 

n=l nn! ’ (3.5) 

which makes it clear that @ is well behaved at  the origin. Here 

y+ = 0.5772156649 ... 
is Euler’s constant. After solving for A ,  the function (€J may be written as 

P2 [ 1 - exp ( - +p2w2)] + [log 

+ 4[p4 + exp ( - Qp2) - 1 - p 2 -  

+ El(+,u2w2) - log Qp2] 
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The velocity components of the solution are 

u = - i[f(w) +g(w)] ei$, v = - [f(w) - g(w)] e*$, 
where f ( w )  = p ~ ~ w - 2  [ 1 - & p W  - exp ( - &pzw2)], 

The no-slip boundary conditions are 

u+. i i=O=v+v" on z =  + A ,  

v+v" = 0 on m = 1, (3-9) 

requiring the introduction of boundary-layer velocities. The equations satisfied 
by these are formed by adding E a2ii/an2 to the right-hand side of the momentum 
equation and noting that n.  V 9 n x V for any boundary layer. This assertion 
allows one to conclude that < 1 and leads to the boundary-layer equations 

(3.10) 
i.ii-2v" = E8'.ii/az', S.ii+iv" = Ea'v"/ar.,j 

a iqaz  + v, . a + pa.ii = o 
near the boundaries z = + A. Near the boundary w = 1 the simpler situation 

(3.11) 

(3.12) 

occurs. The boundary-layer equations (3.9) and (3.11) are of the same form as 
their incompressible counterparts (Gans 1970), so that. the solutions can be 
written down directly. 

In each case boundary layers of thickness E )  are appropriate. Near z = + A 

and near w = 1 

A,, A, and A are determined by the no-slip boundary conditions: 

v" = A exp {( 1 +i) (2E)-3 (a - l)}. (3.14) 

(3.15) 

A, = ig(w) = (3i/2p2) [ l o g ~ 2 + E , ( $ p 2 ~ 2 ) - E 1 ( ~ p 2 ) ] - i f ( l ) ,  
A , = if(w) = (i/p4w2) [ 1 - &p2w2 - exp ( - $p'k2)], 

A = ( 2 1 ~ 4 )  [ 1 - $,u2 - exp ( - ip')]. 

4. The Ekman suction, its interior correction and resonance 
The solutions (3.13)-(3.15), when substituted into (3.10) and (3.12), define 

'Ekman suctions' : normal boundary-layer velocities smaller by a factor of 234 
than the tangential velocities. This suggests that the entire velocity v should have 
been formally expanded in powers of E and E4: 

v = E U ~ + E E * U , + . . .  +~ii,+~EJii,+... . 
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For these to be the leading two terms, 8 < E4. Otherwise, the second term in the 
expansion would be O(e2).  As will become clear, this restriction is not necessary 
to establish the existence and amplitude of the resonance. To compute the 
amplitude, as will be done in $5, it is merely necessary that 8 < E). 

It should be remarked that the solutions found in 5 3 above, and called u and 6, 
are actually u, and 6,. The subscript has been suppressed in the interest of neat- 
ness. The subscript 2 will be used when it is required. 

The suction terms, part of ii,, can be found by integrating (3.10) and (3.12). 
After some algebra, the end-wall suction may be written as 

@a = + + ( & E ) 4 [ ( 3 ~ P + ~ ) - i ( 3 ~ J ’ - ~ ) ]  = rf: W(W),  (4.1) 
where 

P = 3w[log w2 + El( ip2a2)] + ( G/p2w) [ 1 - exp ( - &p2w2)] 

- {(2/p2U2) [I- ~ X P  ( - Qp2)1 - 1 + 3El (+~2) l l  a. (4.2) 

(4.3) 

The side-wall suction is more easily calculated: 

ii2s = - (1 + i) p-4 (2E)t [ 1 - Sp2 - exp ( - +p2)] = U .  

The inviscid correction terms u2, v2 and w2 will satisfy (2.4) with the right-hand 
side equal to zero, and the boundary conditions 

u2(l) + u = 0, w2( 5 A )  * w = 0. (4.4) 

To match W a z-dependent solution will be required. However U can be 
matched by a x-independent interior solution. This suggests splitting the prob- 
lem according to the presence or absence of z dependence. 

The z-independent solution is both simple and uninteresting. It mimics 
closely the original solution developed in $5 2 and 3 and in fact can be incorpor- 
ated within that solution by adding Uei+ to the right-hand side of the first of (2.6). 
After manipulation the result is a modification of the constraints in (2.15) and 
(2.16). In  the context of this section the formal problem for the x-independent 
second-order solution a, would be 

with the boundary condition on a = 1 

(Q2/w)’ + 3(Q2/w) = constant, (4.6) 

the solutions to which have been discussed a t  length. In  what follows attention 
will be restricted to the z-dependent parts of u2 and Q2. 

One can eliminate u2 in terms of Q2. Seeking solutions for Q2 proportional to 
exp (i$) leads to the following boundary-value problem: 
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The latter boundary condition suggests that Q2 should 
z. To that end Q2 will be expanded in a series of the form 

Q2 = Z An Qn(w) cos knz, 
n 

and the differential equation for each component is 

be an even function of 

(4.8) 

kn is to be chosen such that 
Q A  + ( 2 1 ~ )  Qn = 0. (4.10) 

The remaining boundary condition is 

x A n Q n ( w ,  k,) k,sink,h = - W(w).  (4.11) 

The homogeneous problem for the eigenfunctions Qn(w)  can be rewritten as a 

n 

Sturm-Liouville problem under the substitutions 

viz. 

with 

(4.13) 

(4.13) 

(4.14) 

Thus these eigenfunction-eigenvalue pairs form a complete set and are ortho- 
gonal, and the remaining boundary condition can be written formally as 

ZAd,@(x)knsink,h = -w-lW(w) = W(x) .  (4.15) 
n 

The functions an are confluent hypergeometric functions, 

@(ki/Zp2,2; x )  = @(un, 2 ;  x). 

A flaw in this formal scheme arises if 

(4.16) 

k,h = mn-, (4.17) 

where n and m are any integers. The k,  are discrete, but tend to infinity with n, 
so that the equivalent condition, that the length-to-diameter ratio take particular 

(4.18) 
values, viz. 

h = mn-r/k,, 

can be approached with arbitrary precision for sufficiently large m and n. There 
is an infinite set of A such that knh = nn-, and if 

the formal result that A, = 00 is obtained. I n  more common terms, the system 
resonates. 

5. Construction of a valid first-order solution 
Atechnique that usually works in cases of resonance is to introduce an arbitrary 

amount of t,he resonant solution into the lowest-order result and calculate the 
magnitude of the resonant solution according to a solvability condition. In  this 
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case it is clear that the resonant solution will have to be of the same order as the 
forced solution, not significantly larger. This contrasts with simpler cases (e.g. 
Gans 1970), and is true because the upset does not occur at first order. 

The resonant mode is characterized by 

Q.,(n2nz/2h2,u2, 2; - &,u2a2), (5.1) 

satisfying (4.13) and (4.14), and the forced solution is given by (3.6). This will 
be denoted by OF, so that the inviscid solution will be taken to be 

= @p+AQR = w-'(Qp+AQR), (5.2) 

where A is to be determined. The subscript R denotes 'resonant'. Q p  and QR 
are to be viewed a9 functions of w. 

The inviscid first-order velocity is now given by (3.7) plus the resonant velo- 
cities 

nn 

i (5.3) 

inn nr . 
wR = ----AQRsin-zee"+. 

h h 

A prime denotes diflerentiation with respect to a. 
The introduction of z dependence does not change the boundary-layer struc- 

ture given in 3 3 above, The only qualitative addition is a uiR on w = 1.  It satisfies 
the same equation as the azimuthal component. Thus the boundary-layer quant- 
ities are the same as those given in (3.i3)-(3.i5),  plus theresonant terms. These 
are written in the same form as the non-resonant terms. 

Nearz= + A  

-- i (c)h-,QR) 1 exp [ ? - 3*( 1 + i )  ( z  T h)]}e@,  
6 ( 2 W  

clR=_A((Qk+,@R)exp[ 1 *m+(tFh)] 1 - i  
2 

1 1 34(1 +i) 
-- 6 (Qk --a QR)  exp [ 5 (2 T h)])ei'. 

Near m = 1 the result is even simpler: 

nr l+ i  

inn 

(5.4) 

( 5 . 5 )  
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To find the suctions i t  is then merely necessary to put these results into (3.10) 
and the appropriate modification of (3.12), viz. 

iv"lR aGIR a62R - 0. -+- +- - 
w ax aw 

The end-wall Ekman suction, after some algebra, and use of the differentia1 
equation to simplify the w-dependent functions, is 

z Z ~ R  = T + ( ~ E ) * [ ( 3 $ + 1 ) k ~ - 2 ~ 3 * p ~ ] + i [ ( l - 3 ~ ) k f + 2 ~ 3 * , ~ , ~ ]  = TWR(w). (5.7) 

A similar, simpler calculation, using the boundary condition on QR, gives 

The right-hand sides of (5.7) and (5.8) will be denoted by 

W'(w) and UR cos {(nnlh) x} respectively. 

It is now possible to return to the analysis following (4.7). The new second- 
order problem for the correction terms is 

(5.9a) 

(5.9b) 

i 2  aQ = T(W(W)-WR(W))  on z = + A .  (5.9c) 
ax 

The condition that this problem have a solution is that the homogeneous solution 

QR = w@, cos {(nn/h) Z }  ei+ 

be orthogonal to the inhomogeneous terms. To establish this condition, multiply 
(5.9a) by 

wexp (+,u2m2) QR(w) cos{(nn-/h) Z} e--<+ 

and integrate over the volume, using the boundary conditions to evaluate the 
surface integrals. This leads to the solvability condition 

2 Io1QR exp (Bp2d) WE w dw - h U, QR( 1) exp ( +p2) 

1 

0 
= 2 1  QIsexp(B,u2w2) Wwdw. (5.10) 

This can be solved for A in terms of integrals over QR = wQn: 

A = {[6 x 3*p211 + 3(3) + 1 - 2 X 3 3 , ~ ~ )  1 2  +p213] 

+ i[6 x 3*p21, + 3(34 - 1 - 2 x 3*,u2) l2 -,~'1~]} 

x {3[(3$+ 1) k2-2 x 3$211-3i[(3*- 1)  k2-2 x 

+ 3%( 1 + i) A( 1 + n27r2/h2) @:( l)}-l, (5.11) 
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where k = nn/h and the three integrals are given by 

w3exp (gp2m2) ~ % ( w )  d w ,  I~ = 

621 

I2 = w3exp (&,u2w2) @,,(.a) dw,  (5.12) 

I3 = 1'w3exp (g,u2m2) (DR(w) (D;(w) d w .  

1: 
0 

From these expressions it is clew that the amplitude decreases a t  least as fast 
as n-2, and the graver modes are likely to be more important. 

I have been unable to perform the integrations in (5.12) for an arbitrary 
resonance. However the reader can easily verify that the following 'reasonable' 
setting of the parameters, 

,u = 33, h = in, n = 1, k = 1, (5.13) 

defines a resonant mode for which 

@(w) = e-312aQ. 

With this simplification 
(5.14) 

I1 = 0.0982610221, I,, = $, I3 = -0.1699139284, @&(l) = 0.0497870683. 
(5.15) 

Substitution of these into (5.11) gives 

A = 0.2481335818 - 0.0940164302i. (5.16) 

The accuracy displayed is that of the calculations. It far exceeds the accuracy 
to be expected in any experiment. 

6. Discussion 
The existence of a z-dependent response of order E driven by a z-independent 

forcing of order E has been demonstrated, and the magnitude of the driven mode 
has been calculated formally. The analysis indicates that the high-order (in radial 
structure) free modes are likely to be unimportant, but that low-order modes 
can arise for realizable laboratory situations. Thus the flow is likely to be very 
different from that predicted by the analysis of Q 3. 

Two further questions present themselves in the context of this work. Is the 
flow stable ? What (axisymmetric) zonal flows can one expect ? I shall first address 
the former question and then give a recipe by which the answer to the latter can 
be found. Following the recipe is beyond the scope of this paper. 

The usual infinitesimal stability analysis is clearly not tractable in the present 
circumstances. Instead I claim that if the pressure and density gradients are anti- 
parallel the fluid is inviscidly unstable. (Both gradients must be non-zero as well.) 
Viscous stability is beyond the scope of the paper. With this assertion a sufficient 
condition for instability is 

(6.1) vpT. vp, < 0. 
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Here pr and pT are the total density and pressure, respectively. In the present 
linear analysis (6.1) becomes 

vp, . vp, + a p .  vp, + .vp,. vp < 0. (6.2) 

Equation (2.3)) with K = 0, leads to 

for the solution under consideration. Also 

VPO = P2WP0, VPO = WPO, 
so that (6.2) becomes 

pWp;{w + 2€[(pa2+ I )  CD + a@'] w@} < 0) (6.5) 

where it is understood that CD includes both (3.6) and A@,. The O(e) part of the 
expression is a function of w2, so that, if it  does not vanish at  w = 0, there will be 
a minimum radius within which (6.5) holds, so that a central core of disturbed 
fluid is a distinct possibility. 

I shall prove below that that part of @ given by (3.6) has the property that 

Q < CD'B(0) < 1, (6.6) 

increasing monotonically with p. From the series representation of the confluent 
hypergeometric function, 

CDR(0) = I. (6.7) 

(6.8) 

The actual approximate instability criterion is then 

w + 2 ~ ( ( @ ~ ( 0 )  + Re (A)  cos q5 - Im ( A )  sin $1 < 0. 

tan q5 = - Im A/(  QF(0) +Re A )  

The maximum value of the bracketed term occurs when 

(6.9) 

and is equal to the absolute value of @,(O) +A. For the numerical example given 
in $5 above (Dp(0) z 0.484 and 

Wcrit = 1.486. (6.10) 

This result is half as large again as that which would be predicted theoretically 
ignoring the resonance. 

Of interest is the fact that instability does not set in a t  the 'highest point' 
q5 = 71. The coefficients of cos q5 and sin$ in (6.8) are positive, so that q5 must lie 
in the third quadrant to make the bracket negative. Thus the ambiguity in the 
arctangent is resolved and the critical angle is seen to be 

q5crit = 187") (6.11) 
a shift of 7". 

It is usually true when a rotating fluid is subject to a non-axisymmetric per- 
turbation, as in the case discussed in this paper, that an axisymmetric azimuthal 
or zonal flow is induced. If the perturbation is O(e)  the azimuthal flow is O(c2). 
No amount of iterating back and forth between boundary layers and interior 
flows, coupled by suctions, can produce a zonal flow; only the nonlinear inter- 
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actions can change the 4 dependence. Unfortunately it is not suficient to cal- 
culate the nonlinear forcing term which is axisymmetric, u*.Vu, to find the 
zonal flow. The reader can verify that a second-order zonal flow of the form 

v2 = (0, V(@, 0 )  

will satisfy the equations and boundary conditions for any V(w). The ambiguity 
can only be resolved by viscosity, which makes the analysis tedious in the ex- 
treme. A brief outline of the procedure follows. 

One must find the rectified boundary layers, as well as the (arbitrary) interior 
flow correct to O(c2). This involves both forced and free components, as terms of 
the form ii; . vul, a*, . VU,, u: . va, 
must be included in the boundary-layer equations. The results of this calculation 
will involve the arbitrary function V(w). One then insists that the Ekman suction 
from the end walls, which is O(e2E*), must be zero, which allows a solution for 

Note that the relative magnitude of E and Eh is irrelevant to this process. 
It is only necessary that both be small. The amplitude of the resonant mode is 
independent of E and must be included, and the mutual orthogonality of axi- 
symmetric and non-axisymmetric terms assures no interference between the 
EEB effluxes and the c2 driving forces. 

The remainder of paper is devoted to the proof of the statement regarding the 
behaviour of O(0) as a function of p. The reader who finds such things tedious 
may profitably skip to the references. 

@(O) may be written in two forms by using the identity (3.5).  I n  terms of the 

V ( 4  - 

3 ( -  l)"(*p2)" 
(6.13) 

? 1 
series 

O(0) = l+-[~-I+exp(-*p2)]+-  C 
P4 2p2,=1 nn! 

It is convenient to change the variable by putting 5 = ip2, giving the expression 

(6.13) 

The reader can easily verify that Y(0) = 8. 
By using the series representation for the exponential function and separating 

out the constant terms the function can be rewritten as an alternating series, viz. 

00 ( -  1 ) n  6 - 1  
Y(5) = g +  --. 

% = 2 n ( n + l )  n! 
(6.14) 

This function is monotonic if the derivative is of one sign. Differentiating gives 

a n - 1  ( - 1 ) " c n - 2  

n=2n(n+1)  n! ' 
Y '= 2- 

which is positive for 6 = 0. 

(6.15) 

If an alternating series has terms which decrease in magnitude, then the sum 
lies between two successive partial sums. For this series the ratio between the 
(n + 1)th and the nth term is 

5 
n2 

(n- 1) (n+ 1) (n f 2) 
R, = 
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and is less than unity when 

6 < (n- 1) (n+ 1) (n+2)/n2. 

(The right-hand side is a monotonically increasing function of n.) The series is 
clearly positive when the second term is less than the first. This corresponds to 
n = 2 in the formula: 6 < 3. The series is monotonic up to 6 = 3. 

It is now easier t o  switch to the other representation to prove monotonicity for 
the rest of the range. The other representation is 

The reader can easily verify that Y(o0) = 1. 
Differentiating this expression and simplifying gives 

(6.17) 

and every term except -4 is positive if 6 > I .  Thus the expression is clearly 
positive if 

5 > exp[$-33y,] = 2.129990816 < 3. (6.18) 

Thus the derivative is positive over the entire range 0 < g < co, and the statement 
regarding monotonicity is proved. 
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